Ruthenium-Catalyzed Oxidative C(sp²)-H Bond Hydroxylation: Site-Selective C-O Bond Formation on Benzamides

ORGANIC **LETTERS** 2012 Vol. 14, No. 16 4210–4213

Vedhagiri S. Thirunavukkarasu, Jonathan Hubrich, and Lutz Ackermann*

Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstrasse 2, 37077 Göttingen, Germany

Lutz.Ackermann@chemie.uni-goettingen.de

Received July 9, 2012

Well-defined ruthenium carboxylate complexes enabled unprecedented ruthenium-catalyzed $C(sp^2)$ -H hydroxylations on benzamides with PhI(OAc)₂ as the oxidant at a remarkably low catalyst loading of 1.0 mol %.

Metal-catalyzed oxidative C-H bond functionalizations¹ significantly improve the step economy in organic synthesis by avoiding the preparation of prefunctionalized starting materials.² Particularly, rather inexpensive ruthenium³ complexes have recently emerged as increasingly viable tools for oxidative annulations of alkynes through site-selective

(2) (a) Zhu, C.; Wang, R.; Falck, J. R. Chem.- Asian J. 2012, 1502-1514. (b) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651– 3678. (c) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068-5083. (d) Satoh, T.; Miura, M. Chem.-Eur. J. 2010, 16, 11212–11222.

10.1021/ol3018819 C 2012 American Chemical Society Published on Web 08/02/2012

 $C-H/Het-H$ bond functionalizations.⁴ For instance, detailed mechanistic insight into the importance of carboxylate assistance for the key C-H bond activation step⁵ set the stage for oxidative annulations of alkynes by carboxylic acids via challenging cleavages of otherwise inert C-H bonds (Scheme 1a).⁶ Thus, we showed that oxidative $C-H/O-H$ bond functionalizations occurred via cascade reactions consisting of an initial $C-H$ bond activation, along with a difficult C-O bond forming reductive elimination. $\bar{6}a$,b During studies on the working mode of our catalytic system, we found that a simple change of the terminal oxidant resulted in a significantly altered chemoselectivity, in that an intermolecular $C(sp^2) - H^7$ hydroxylation proved viable (Scheme 1b).

The thus-obtained hydroxylated arenes are valuable intermediates in synthetic chemistry, which were thus far largely accessed through metal-catalyzed cross-coupling

⁽¹⁾ Illustrative recent reviews on $C-H$ bond functionalizations: (a) Acc. Chem. Res. 2012, 45, Special Issue 6 $^{\prime\prime}$ C-H Functionalization". (b) Hickman, A. J.; Sanford, M. S. Nature 2012, 484, 177–185. (c) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215–1292. (d) Wencel-Delord, J.; Dröge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740–4761. (e) Ackermann, L.; Potukuchi, H. K. Org. Biomol. Chem. 2010, 8, 4503–4513. (f) Chem. Rev. 2010, 110, Special Issue 2 "Selective Functionalization of $C-H$ Bonds". (g) Boutadla, Y.; Davies, D. L.; Macgregor, S. A.; Poblador-Bahamonde, A. I. Dalton Trans. 2009, 5820–5831 and references cited therein.

^{(3) (}a) Ackermann, L. Pure Appl. Chem. 2010, 82, 1403–1413. (b) Ackermann, L.; Vicente, R. Top. Curr. Chem. 2010, 292, 211–229.

⁽⁴⁾ Selected examples: (a) Thirunavukkarasu, V. S.; Donati, M.; Ackermann, L. Org. Lett. 2012, 14, 3416-3419. (b) Kishor, P.; Jeganmohan, M. Org. Lett. 2012, 14, 1134-1137. (c) Li, B.; Ma, J.; Wang, N.; Feng, H.; Xu, S.; Wang, B. Org. Lett. 2012, 14, 736–739. (d) Ackermann, L.; Lygin, A. V. Org. Lett. 2012, 14, 764–767. (e) Ackermann, L.; Wang, L.; Lygin, A. V. Chem. Sci. 2012, 3, 177-180. (f) Hashimoto, Y.; Ueyama, T.; Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Chem. Lett. 2011, 40, 1165-1166. (g) Ackermann, L.; Fenner, S. Org. Lett. 2011, 13, 6548–6551. (h) Ackermann, L.; Lygin, A. V.; Hofmann, N. Org. Lett. 2011, 13, 3278–3281. (i) Ackermann, L.; Lygin, A. V.; Hofmann, N. Angew. Chem., Int. Ed. 2011, 50, 6379–6382.

⁽⁵⁾ Reviews: (a) Ackermann, L. Chem. Rev. 2011, 111, 1315–1345. (b) Ackermann, L. Chem. Commun. 2010, 46, 4866–4877. (c) Ackermann, L.; Vicente, R; Kapdi, A. Angew. Chem., Int. Ed. 2009, 48, 9792–9826.

^{(6) (}a) Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153–4155. (b) Ackermann, L.; Pospech, J.; Graczyk, K.; Rauch, K. Org. Lett. 2012, 14, 930–933. See also: (c) Chinnagolla, R. K.; Jeganmohan, M. Chem. Commun. 2012, 48, 2030–2032.

⁽⁷⁾ Selected representative examples of ruthenium-catalyzed hydroxylations of $C(sp^3)$ – \overrightarrow{H} bonds with lower dissociation energies: (a) McNeill, E.; Du Bois, J. Chem. Sci. 2012, 3, 1810-1813. (b) Harvey, M. E.; Musaev, D. G.; Du Bois, J. J. Am. Chem. Soc. 2011, 133, 17207–17216. (c) Milczek, E.; Boudet, N.; Blakey, S. Angew. Chem., Int. Ed. 2008, 47, 6825–6828. (d) Liang, J.-L.; Yuan, S.-X.; Huang, J.-S.; Yu, W.-Y.; Che, C.-M. Angew. Chem., Int. Ed. 2002, 41, 3465–3468 and references cited therein.

Scheme 1. C-H Activation for $C-O$ Forming Reductive Elimination

(a) C-O forming reductive elimination for alkyne annulation^{6b}

reactions with prefunctionalized aryl halides.⁸ Furthermore, palladium, iron and copper catalysts were recently exploited for sustainable C $-H$ functionalization strategies.^{8,9} On the contrary, ruthenium-catalyzed ortho-selective C $-H$ bond hydroxylations on benzamides¹⁰ have to the best of our knowledge thus far proven elusive. Herein, we disclose our findings on two protocols for rutheniumcatalyzed oxidative $C(sp^2)$ –H hydroxylation, notable features of which include (i) the use of inexpensive $[RuCl₃(H₂O)_n]$ as most user-friendly catalyst, (ii) weakly coordinating benzamides as readily modifiable directing groups, and (iii) a remarkably low catalyst loading of well-defined ruthenium(II) biscarboxylates.

Our studies commenced by exploring various terminal oxidants for intermolecular C-H bond functionalizations on benzamide 1a (Tables 1, and S-1 in the Supporting Information).

Table 1. Optimization of C-H Hydroxylation^{a}

^{*a*} Reaction conditions: **1a** (0.5 mmol), oxidant $(1.1-1.2 \text{ equiv})$, [Ru] (5.0 mol %), TFA/TFAA (2.5 mL, 3:2), 110-120 °C, 24-30 h; isolated yields. b GC conversion. c [Ru(O₂CMes)₂(*p*-cymene)] (6) (1.0 mol %). d 80 °C. ^{*e*} 8 h.

Initially, we observed the formation of desired product **2a** with $Cu(OAc)₂·H₂O^{4g-i,6a,6b}$ as the oxidant when using a solvent mixture of TFA and TFAA (entry 1).¹¹ Among a variety of terminal oxidants, $K_2S_2O_8$ gave rise to promising results (entries $2-6$), while product 2a was not generated in the absence of an oxidant or the absence of a ruthenium complex (entries 7 and 8). Different ruthenium complexes served as efficient catalysts, including homobimetallic complexes $\text{[Ru}_2(\text{OAc})_4\text{Cl}$ (3) and tetrakis(2-oxypyridinato)diruthenium(II,III) chloride, $\text{[Ru}_2(\text{hp})_4\text{Cl}$ (4)^{7b} (entries 9 and 10). Interestingly, most efficient C $-H$ bond hydroxylations of amide 1a were achieved with $PhI(OAc)_2$ as the oxidant (entry 11),¹² which also allowed for the use of inexpensive $\text{[RuCl}_3(\text{H}_2\text{O})_n\text{]}$ (5)¹³ (entry 12). Finally, we found that optimal results proved viable with $\text{[Ru(O}_2\text{CMes})_2$ -(p -cymene)] (θ),¹⁴ thereby furnishing the desired product 2a in excellent isolated yields even at lower reaction temperatures (entries $13-15$), shorter reaction times (entry 16), or with a

⁽⁸⁾ Recent reviews: (a) Alonso, D. A.; Najera, C.; Pastor, I. M.; Yus, M. Chem.—Eur. J. 2010, 16, 5274–5284. (b) Enthaler, S.; Company, A. Chem. Soc. Rev. 2011, 40, 4912–4924 and references cited therein.

⁽⁹⁾ Selected examples: (a) Yoneyama, T.; Crabtree, R. H. J. Mol. Catal. A 1996, 108, 35–40. (b) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300–2301. (c) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790–6791. (d) Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 14654–14655. (e) Chen, X.; Zhang, J.; Fu, X.; Antonietti, M.; Wang, X. J. Am. Chem. Soc. 2009, 131, 11658–11659. (f) Gou, F.-R.; Wang, X.-C.; Huo, P.-F.; Bi, H.-P.; Guan, Z.-H.; Liang, Y.-M. Org. Lett. 2009, 11, 5726-5729. (g) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed. 2011, 50, 11062–11087. (h) Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 134–137. (i) Kamata, K.; Yamaura, T.; Mizuno, N. Angew. Chem., Int. Ed. 2012, 51, 7250–7253 and references cited therein. (j) A review: Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147–1169.

⁽¹⁰⁾ During the preparation of our manuscript Rao reported on a catalyzed hydroxylation of esters largely with Selectfluor or $K_2S_2O_8$ as the oxidant: (a) Yang, Y.; Lin, Y.; Rao, Y. Org. Lett. 2012, 14, 2874– 2877. (b) For noncatalytic reactions with benzamides using stoichiometric amounts of sec-BuLi, see: Parker, K. A.; Koziski, K. A. J. Org. Chem. 1987, 52, 674–676.

⁽¹¹⁾ The use of cosolvents other than TFAA provided less satisfactory results (see the Supporting Information).

⁽¹²⁾ Reactions did not occur with molecular oxygen as the oxidant. (13) Examples of using $\text{RuCl}_3(\text{H}_2\text{O})_n$] (5) as the catalyst in C-H bond functionalizations: (a) Simon, M.-O.; Genet, J.-P.; Darses, S. Org. Lett. 2010, 12, 3038–3041. (b) McNeill, E.; Du Bois, J. J. Am. Chem. Soc. 2010, 132, 10202–10204. (c) Ackermann, L.; Althammer, A.; Born, R. Tetrahedron 2008, 64, 6115–6124. (d) Ackermann, L.; Althammer, A.; Born, R. Synlett 2007, 2833–2836.

⁽¹⁴⁾ For the use of complex 6 in direct alkylations or arylations, see: (a) Ackermann, L.; Novák, P.; Vicente, R.; Hofmann, N. Angew. Chem., Int. Ed. 2009, 48, 6045–6048. (b) Ackermann, L.; Vicente, R.; Potukuchi, H. K.; Pirovano, V. Org. Lett. 2010, 12, 5032–5035. (c) Ackermann, L.; Pospech, J.; Potukuchi, H. K. Org. Lett. 2012, 14, 2146–2149.

Scheme 2. Effect of N-Substituents on $C-H$ Hydroxylations

Scheme 3. Scope of C-H Hydroxylation with Catalyst 6

significantly reduced catalyst loading of only 1.0 mol % $(entries 14-16).$

With an optimized catalytic system in hand, we probed its efficacy in the direct C-H bond hydroxylation of parent benzamides 1 displaying different N-substituents (Scheme 2). The ruthenium(II) biscarboxylate 6 was found to be broadly applicable and furnished the highest yields of products 2 with arenes bearing N,N-di(iso-propyl) substituents as weakly coordinating directing groups.¹⁵

Next, we explored the scope of complex 6 in the direct hydroxylation of various N,N-di(iso-propyl)-substituted benzamides 1 (Scheme 3). We were pleased to observe that ruthenium(II) catalyst 6 displayed a remarkably high tolerance of valuable functional groups, including ester, fluoro, chloro, bromo, iodo, or nitro substituents. Notably, metasubstituted substrates delivered phenols 2r and 2s as the sole products though monoselective¹⁶ and site-selective direct hydroxylation at the less hindered $C-H$ bonds.

Scheme 4. Inexpensive $\text{RuCl}_3(\text{H}_2\text{O})_n$ (5) as the Catalyst

Scheme 5. Competition Experiment with Benzamides 1

In considering the user-friendly nature of inexpensive $\text{[RuCl}_3(\text{H}_2\text{O})_n]$ (5), we furthermore tested the scope of this catalyst with a representative set of amides 1 (Scheme 4).

⁽¹⁵⁾ A catalytic direct hydroxylation with N-methyl benzamide gave a conversion of 36% under otherwise identical reaction conditions. C-H bond hydroxylations with ketones as weakly coordinating directing groups are currently ongoing in our laboratories and will be reported in due course.

⁽¹⁶⁾ The formation of dihydroxylated products was not observed in any of the ruthenium-catalyzed transformations reported herein.

Hence, complex 5 enabled the *ortho*-hydroxylation on various benzamides 1 in high yields, with meta-substituted substrate 1r being again site selectively hydroxylated at the less sterically hindered C-H bond.

Given the remarkable efficacy exerted by the optimized catalytic system, we performed mechanistic studies to delineate its working mode. To this end, we performed intermolecular competition experiments, which rendered a simple S_EAr -type reaction manifold unlikely to be operative (Scheme 5).

Moreover, oxidative hydroxylations with isotopically labeled substrate $[D]_5$ -1a highlighted a significant D/H

exchange in the ortho-position and were, thus, indicative of a reversible C-H bond metalation (Scheme 6).

In summary, we have reported on first rutheniumcatalyzed $C(sp^2)$ -H hydroxylations on arenes bearing weakly coordinating amides. The intermolecular oxidative $C-O$ bond formations were accomplished with PhI(OAc)₂ as the oxidant and user-friendly $\text{[RuCl}_{3}(\text{H}_{2}\text{O})_{n}]$ (5) as an inexpensive catalyst. Yet, most satisfactory results were accomplished with well-defined ruthenium(II) biscarboxylate $[Ru(O_2CMes)_2(p-cymene)]$ (6), which allowed for highly efficient $C(sp^2) - H$ hydroxylations with ample scope at a remarkably low catalyst loading of only 1.0 mol %. Mechanistic studies provided support for a reversible $C-H$ bond metalation step.

Acknowledgment. Generous support by AstraZeneca and the Alexander von Humboldt Foundation (fellowship to V.S.T.) is gratefully acknowledged.

Supporting Information Available. Experimental procedures, characterization data, and ${}^{1}H$ and ${}^{13}C$ NMR spectra for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.