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ABSTRACT

Well-defined ruthenium carboxylate complexes enabled unprecedented ruthenium-catalyzed C(sp2)�H hydroxylations on benzamides with
PhI(OAc)2 as the oxidant at a remarkably low catalyst loading of 1.0 mol %.

Metal-catalyzed oxidativeC�Hbond functionalizations1

significantly improve the step economy in organic synthesis
by avoiding the preparation of prefunctionalized starting
materials.2Particularly, rather inexpensive ruthenium3com-
plexes have recently emerged as increasingly viable tools
for oxidative annulations of alkynes through site-selective

C�H/Het�H bond functionalizations.4 For instance, de-
tailed mechanistic insight into the importance of carbox-
ylate assistance for the key C�H bond activation step5 set
the stage for oxidative annulations of alkynes by carboxylic
acids via challengingcleavagesofotherwise inertC�Hbonds
(Scheme 1a).6 Thus, we showed that oxidative C�H/O�H
bond functionalizations occurred via cascade reactions con-
sisting of an initial C�H bond activation, along with a
difficult C�O bond forming reductive elimination.6a,b Dur-
ing studies on the working mode of our catalytic system, we
found that a simple changeof the terminal oxidant resulted in
a significantly altered chemoselectivity, in that an intermole-
cular C(sp2)�H7 hydroxylation proved viable (Scheme 1b).
The thus-obtained hydroxylated arenes are valuable

intermediates in synthetic chemistry, which were thus far
largely accessed through metal-catalyzed cross-coupling
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reactions with prefunctionalized aryl halides.8 Further-
more, palladium, iron and copper catalysts were recently
exploited for sustainableC�Hfunctionalization strategies.8,9

On the contrary, ruthenium-catalyzed ortho-selective
C�H bond hydroxylations on benzamides10 have to the
best of our knowledge thus far proven elusive. Herein, we
disclose our findings on two protocols for ruthenium-
catalyzed oxidative C(sp2)�H hydroxylation, notable
features of which include (i) the use of inexpensive
[RuCl3(H2O)n] as most user-friendly catalyst, (ii) weakly
coordinating benzamides as readily modifiable directing
groups, and (iii) a remarkably low catalyst loading of
well-defined ruthenium(II) biscarboxylates.
Our studies commenced by exploring various terminal

oxidants for intermolecular C�H bond functionalizations
on benzamide 1a (Tables 1, and S-1 in the Supporting
Information).

Initially, we observed the formation of desired product
2awithCu(OAc)2 3H2O

4g�i,6a,6b as the oxidant when using
a solvent mixture of TFA and TFAA (entry 1).11 Among a
variety of terminal oxidants, K2S2O8 gave rise to promising
results (entries 2�6), while product 2awas not generated in
the absence of an oxidant or the absence of a ruthenium
complex (entries 7 and 8). Different ruthenium complexes
served as efficient catalysts, including homobimetallic com-
plexes [Ru2(OAc)4Cl] (3) and tetrakis(2-oxypyridinato)-
diruthenium(II,III) chloride, [Ru2(hp)4Cl] (4)

7b (entries 9
and 10). Interestingly, most efficient C�H bond hydro-
xylations of amide 1awere achieved with PhI(OAc)2 as the
oxidant (entry 11),12 which also allowed for the use of
inexpensive [RuCl3(H2O)n] (5)

13 (entry 12).Finally,we found
that optimal results proved viable with [Ru(O2CMes)2-
(p-cymene)] (6),14 thereby furnishing the desired product 2a
in excellent isolatedyields evenat lower reaction temperatures
(entries 13�15), shorter reaction times (entry 16), or with a

Scheme 1. C�H Activation for C�O Forming Reductive
Elimination

Table 1. Optimization of C�H Hydroxylationa

entry [Ru] oxidant yield (%)

1 [RuCl2(p-cymene)]2 Cu(OAc)2 3H2O 11b

2 [RuCl2(p-cymene)]2 AgOAc �
3 [RuCl2(p-cymene)]2 oxone �
4 [RuCl2(p-cymene)]2 t-BuOOH �
5 [RuCl2(p-cymene)]2 (t-BuO)2 �
6 [RuCl2(p-cymene)]2 K2S2O8 74

7 [RuCl2(p-cymene)]2 � �
8 � K2S2O8 �
9 [Ru2(OAc)4Cl] (3) K2S2O8 78

10 [Ru2(hp)4Cl] (4) K2S2O8 73

11 [Ru2(OAc)4Cl] (3) PhI(OAc)2 90

12 [RuCl3(H2O)n] (5) PhI(OAc)2 79

13 [Ru(O2CMes)2(p-cymene)] (6) PhI(OAc)2 91

14 [Ru(O2CMes)2(p-cymene)] (6) PhI(OAc)2 96c

15 [Ru(O2CMes)2(p-cymene)] (6) PhI(OAc)2 76c,d

16 [Ru(O2CMes)2(p-cymene)] (6) PhI(OAc)2 93c,e

aReaction conditions: 1a (0.5 mmol), oxidant (1.1�1.2 equiv), [Ru]
(5.0 mol %), TFA/TFAA (2.5 mL, 3:2), 110�120 �C, 24�30 h; isolated
yields. bGC conversion. c [Ru(O2CMes)2(p-cymene)] (6) (1.0 mol %).
d 80 �C. e 8 h.
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significantly reduced catalyst loading of only 1.0 mol %
(entries 14�16).

With an optimized catalytic system in hand, we probed
its efficacy in the direct C�H bond hydroxylation of
parent benzamides 1 displaying different N-substituents
(Scheme 2). The ruthenium(II) biscarboxylate 6was found
to be broadly applicable and furnished the highest yields
of products 2 with arenes bearing N,N-di(iso-propyl) sub-
stituents as weakly coordinating directing groups.15

Next, we explored the scope of complex 6 in the direct
hydroxylation of various N,N-di(iso-propyl)-substituted
benzamides 1 (Scheme 3).We were pleased to observe that
ruthenium(II) catalyst 6 displayed a remarkably high toler-
ance of valuable functional groups, including ester, fluoro,
chloro, bromo, iodo, or nitro substituents. Notably, meta-
substituted substrates delivered phenols 2r and 2s as the sole
products though monoselective16 and site-selective direct
hydroxylation at the less hindered C�H bonds.

In considering the user-friendly nature of inexpensive
[RuCl3(H2O)n] (5), we furthermore tested the scope of this
catalyst with a representative set of amides 1 (Scheme 4).

Scheme 2. Effect of N-Substituents on C�H Hydroxylations

Scheme 3. Scope of C�H Hydroxylation with Catalyst 6

Scheme 4. Inexpensive [RuCl3(H2O)n] (5) as the Catalyst

Scheme 5. Competition Experiment with Benzamides 1

(15) A catalytic direct hydroxylation withN-methyl benzamide gave
a conversion of 36% under otherwise identical reaction conditions.
C�H bond hydroxylations with ketones as weakly coordinating direct-
ing groups are currently ongoing in our laboratories andwill be reported
in due course.

(16) The formation of dihydroxylated products was not observed in
any of the ruthenium-catalyzed transformations reported herein.
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Hence, complex 5 enabled the ortho-hydroxylation on
various benzamides 1 in high yields, withmeta-substituted
substrate 1r being again site selectively hydroxylated at the
less sterically hindered C�H bond.
Given the remarkable efficacy exerted by the optimized

catalytic system, we performed mechanistic studies to
delineate its working mode. To this end, we performed
intermolecular competition experiments, which rendered a
simple SEAr-type reaction manifold unlikely to be opera-
tive (Scheme 5).
Moreover, oxidative hydroxylations with isotopically

labeled substrate [D]5-1a highlighted a significant D/H

exchange in the ortho-position and were, thus, indicative
of a reversible C�H bond metalation (Scheme 6).
In summary, we have reported on first ruthenium-

catalyzed C(sp2)�H hydroxylations on arenes bearing
weakly coordinating amides. The intermolecular oxidative
C�Obond formationswere accomplishedwith PhI(OAc)2
as the oxidant and user-friendly [RuCl3(H2O)n] (5) as an
inexpensive catalyst. Yet, most satisfactory results were
accomplished with well-defined ruthenium(II) biscarbox-
ylate [Ru(O2CMes)2(p-cymene)] (6), which allowed for
highly efficient C(sp2)�H hydroxylations with ample
scope at a remarkably low catalyst loading of only 1.0
mol %. Mechanistic studies provided support for a rever-
sible C�H bond metalation step.
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